www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

Unprecedented glycan nanocompartments sustain plant vessel wall patterning and xylem robustness

Admin by Admin
March 23, 2022
Reading Time:3min read
0

RELATED POSTS

A transnational collaboration leads to the characterization of an emergent plant virus

Citizen science initiatives increase pollinator activity in private gardens and green spaces

Why this promising biofuel crop takes a summer break

Xylan-based nanocompartments govern vessel wall patterning. a, Z-plane of a pit in wild-type xylem vessel wall probed using xylan-recognized antibodies (green). b, AFM images of vessel walls, showing disorganized cellulosic nanofibrils in the mutant. c, Model for xylan nanocluster formation in pitted vessel cells by xylan synthase. The embedded figure is mass spectrography of the reaction products catalyzed by IRX10 without an acceptor substrate. Credit: IGDB

Researchers led by Prof. Zhou Yihua from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) recently reported an identification of unprecedented xylan nanocompartments at the pit borders of xylem vessels in rice and Arabidopsis using super-resolution confocal microscopy.

All living organisms can self-organize into a highly efficient operation system, whose robustness is maintained by compartmentalization of cells to various specialized subcellular structures. For example, lipid bilayers and proteins usually form micro- and nanocompartments via clustering and phase separation. Saccharides are an important class of biomacromolecules that are capable of compartmentalization. Due to the difficulties in probing sugar molecules, very few saccharide-based structures have been characterized. Our knowledge about nanoscale glycan compartments with specific functions is fairly scarce.

In plants, more than two-thirds of carbon dioxide fixed by photosynthesis are converted into structural polysaccharides to construct cell walls surrounding every plant cell, thereby forming tissues, organs and individual plantlets. Xylem vessels of plant vasculature display notable cell wall compartments, such as annular/spiral patterns (protoxylem) and reticulate/pitted patterns (metaxylem). However, how the extracellular polysaccharides self-organize into nanocompartments is unknown.

In this study, the researchers revealed that the nanocompartments are produced by the activities of IRREGULAR XYLEM (IRX)10 and five homologues of the glycosyltransferase 47 family. Rice IRX10, a major member contributing to xylan synthesis in vessels, can mediate xylan chain elongation and initiate the generation of xylooligomers without an acceptor, indicating a de novo synthetic machinery.

Furthermore, atomic force microscopy revealed the nanoscale wall topography around pit boundaries sustained by the xylan nanoclusters. Surprisingly, disruption of the xylan nanostructure leads to abnormal and fused pits with improperly packed cellulosic nanofibrils, resulting in reticulate-like patterns that compromise vessel robustness.

Moreover, through investigating the vessel pit size and growth traits in 42 core rice accessions, the pit size was correlated with agronomic traits, such as plant height.

Buy JNews
ADVERTISEMENT

Hence, using multiple cutting-edge approaches, the researchers outlined a mechanism of how xylans are synthesized, how they are assembled into nanocompartments and how the nanocompartments sustain cell wall pit patterning to support efficient water transportation throughout the plant body.

The xylan nanostructures at pit boundary are analogous to merrow edges of buttonholes preventing thread release; its role is to sustain cell wall coherence, which deepens understanding of cell wall patterning established from a cytosolic-based perspective. More miraculous polysaccharide-based nanostructures are expected. Furthermore, the discovery of a de novo xylan synthase opens new avenues for rational manipulation of this polymer.

In summary, this study bridges the knowledge gap between polysaccharide synthesis and functional structures, evoking rethinking of diverse physiologic processes in plants and providing new perspectives for precision design of crops.

This work was published in Nature Plants on Mar. 22.


How does your garden grow? Study identifies instigators of plant growth


More information:
Hang Wang et al, Xylan-based nanocompartments orchestrate plant vessel wall patterning, Nature Plants (2022). DOI: 10.1038/s41477-022-01113-1

Provided by
Chinese Academy of Sciences

Citation:
Unprecedented glycan nanocompartments sustain plant vessel wall patterning and xylem robustness (2022, March 23)
retrieved 23 March 2022
from https://phys.org/news/2022-03-unprecedented-glycan-nanocompartments-sustain-vessel.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

A transnational collaboration leads to the characterization of an emergent plant virus

January 27, 2023
Agriculture

Citizen science initiatives increase pollinator activity in private gardens and green spaces

January 27, 2023
Agriculture

Why this promising biofuel crop takes a summer break

January 27, 2023
Agriculture

Plant protection of the future may come from the plants themselves

January 26, 2023
Agriculture

Study analyzes gender differences in uptake of biological control agent to tackle tomato pest in Pakistan

January 26, 2023
Agriculture

Proper management of nitrogen and irrigation shown to increase yields and reduce leaching

January 26, 2023
Next Post

Going door-to-door to save Egypt's pumpkins and address global food insecurity

DA to rejuvenate citrus industry in Nueva Vizcaya

Latest News

Agricultural trademark violations pose health concern, says Charles | Lead Stories

December 2, 2022

Revisiting Agricultural Trade and Food Assistance Programs in the Farm Bill

October 13, 2022

Study shows hydroponic systems as a promising method for sustainable saffron production

January 5, 2023

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: