www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

Tweaking carotenoids to improve plant growth and tolerance

Admin by Admin
March 8, 2022
Reading Time:3min read
0

RELATED POSTS

Why this promising biofuel crop takes a summer break

Plant protection of the future may come from the plants themselves

Study analyzes gender differences in uptake of biological control agent to tackle tomato pest in Pakistan

A team of KAUST plant scientists introduced a single gene of the carotenoid pathway into tomatoes, leading to an increase in crop yield, nutritional value and stress tolerance (wild type tomatoes on the top, tomatoes expressing LCYB on the bottom). Credit: Juan C. Moreno

A novel plant-breeding strategy is targeting crop yield, nutritional value and stress tolerance, all through the expression of one gene.

Manipulating the content of carotenoids, such as ß-carotene, has been found to improve plant growth and increase yield and tolerance to abiotic stresses such as drought and salinity.

Within chloroplasts, carotenoids such as ß-carotene and xanthophylls are key components of the photosynthetic apparatus. Now, an international team led by researchers in Salim Al-Babili’s group has shown that alterations in carotenoid metabolism influence hormone content and subsequently plant development and physiology.

The introduction of a single gene of the carotenoid biosynthetic pathway to different tomato cultivars led to significant changes in metabolic pathways, large increases in fruit yield and enhanced pro-vitamin A content.

“Moreover, the metabolic and hormonal changes led to the accumulation of key primary metabolites, improving abiotic stress tolerance and fruit shelf life,” says lead researcher Juan C Moreno.

ß-carotene is produced by the action of a gene known as lycopene ß-cyclase (LCYB). Having previously shown that expression of the carrot DcLCYB1 gene in tobacco increased photosynthesis, stress tolerance, plant biomass and yield, Moreno wanted to see if manipulation of LCYB activity could confer similar growth advantages in an economically important food crop.

Buy JNews
ADVERTISEMENT

Using three different seed sources, all expressing different LCYB genes from tomato, daffodil and bacteria, the researchers grew plants under controlled conditions and outside in polytunnels.

The results confirmed Moreno’s hypothesis that overexpressing the carotenoid gene in tomato would show similar results to his experiment in tobacco.

“Watching the plants in the greenhouse as the weeks and months went by, the transgenic lines were clearly different from the wild type,” he says.

Fruit yield also increased by up to 77 percent and nutritional content was enhanced, with fruit from the transgenic plants containing 20 times more ß-carotene than the wild types.

“The use of state-of-the-art chromatography and mass spectrometry techniques enabled us to provide a comprehensive picture of the changes at metabolome level, which explained the observed phenotypes” adds Jianing Mi, who performed the analytical part of this study.

The modified plants also showed enhanced tolerance to high light intensities, salt and drought stresses.

Working with Al-Babili, the researchers are now trying to apply this technology on cereal crops.

“This study demonstrates the importance of understanding the metabolic processes that underlie plant growth and response to environmental changes, and shows the large potential of plant metabolic and genetic engineering to combat deficiencies in micronutrients,” says Al-Babili.

The findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related challenges.


Research suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way


More information:
Jianing Mi et al, A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato, Metabolic Engineering (2022). DOI: 10.1016/j.ymben.2022.01.004

Provided by
King Abdullah University of Science and Technology

Citation:
Tweaking carotenoids to improve plant growth and tolerance (2022, March 7)
retrieved 7 March 2022
from https://phys.org/news/2022-03-tweaking-carotenoids-growth-tolerance.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

Why this promising biofuel crop takes a summer break

January 27, 2023
Agriculture

Plant protection of the future may come from the plants themselves

January 26, 2023
Agriculture

Study analyzes gender differences in uptake of biological control agent to tackle tomato pest in Pakistan

January 26, 2023
Agriculture

Proper management of nitrogen and irrigation shown to increase yields and reduce leaching

January 26, 2023
Agriculture

Can we increase the carbon content of agricultural soils?

January 26, 2023
Agriculture

Novel strategy for engineering root nodule symbiosis into important crops for more sustainable agri-food systems

January 25, 2023
Next Post

Fungicide combo combats devastating red clover disease

After 17 years of plant-based ice cream, why HumanCo rebranded Coconut Bliss and added dairy

Latest News

As DeSantis deals with Hurricane Ian, Dems push Buttigieg to investigate governor over migrant ‘stunt’

September 30, 2022

Synnefa: Kenyan Agritech Startup Supporting Farmers with Modern Solutions Gets Google’s Attention

September 18, 2022

Engineering seeds to resist drought | MIT News

March 5, 2022

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: