www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

New tomato bred to naturally resist pests and curb disease

Admin by Admin
January 20, 2023
Reading Time:3min read
0

RELATED POSTS

Licorice leaf extract is a promising plant protectant for conventional and organic agriculture

Reducing pesticide pollution and harvesting intensity can increase crop yield and help in climate change mitigation

Five cool things you should know about them

Martha Mutschler-Chu, professor emeritus in the School of Integrative Plant Science, Plant Breeding and Genetics Section, checks tomato plants in Guterman Greenhouse. Credit: Jason Koski/Cornell University

A Cornell researcher has completed a decades-long program to develop new varieties of tomato that naturally resist pests and limit transfer of viral disease by insects.

Martha Mutschler-Chu, a plant breeder and geneticist who leads the program, recently deposited an initial set of insect-resistant tomato research lines in the U.S. Department of Agriculture germplasm system and the Tomato Genetics Resource Center at University of California-Davis, which will be available for anyone to access the plants for research.

This spring, Mutschler-Chu will complete development of a new set of 20 elite lines, which will then be made available to any interested seed company, which may breed the pest resistant traits into commercial varieties. Breeding new varieties could take seed companies up to five years before they start selling new insect resistant varieties.

For growers, these benefits will offer less crop loss and fruit damage, while also eliminating or reducing pesticide use and protecting the environment.

Pest resistance in these tomatoes was adapted from a wild tomato native to Peru, Solanum pennellii. The Andean tomato has little hairs called trichomes that excrete droplets of sugar compounds, called acylsugars, which repulse insects. In this way, the plants safely and naturally deter a wide variety of insects, preventing them from feeding, eating leaves and transferring viruses, or laying eggs, where larvae might damage plants.

“The new lines combine better quality plants and fruit with high acylsugars levels, a combination seed companies need to transmit the acylsugar trait into commercial varieties,” said Mutschler-Chu, professor emeritus in the School of Integrative Plant Science, Plant Breeding and Genetics Section, part of the College of Agriculture and Life Sciences.

Buy JNews
ADVERTISEMENT

In field and laboratory tests of the initial research lines, plant scientists from Cornell and seven other university partners (North Carolina State University; University of Georgia, Clemson University; University of Florida; University of California, Davis; University of California, Riverside; and Tennessee Tech University) found that the right levels and form of acylsugars controlled western flower thrips that spread spotted wilt virus, and sweet potato whiteflies, which transmit yellow leaf curl virus. As a result, significantly fewer plants were infected with these devastating diseases and, in field trials, those infections occurred late in the season.

“For best virus control, I’ve suggested that seed companies use a dual-layer approach: create hybrids with both the acylsugar trait and standard virus resistance genes,” Mutschler-Chu said. If insects manage to infect a plant with a virus in spite of the acylsugars, virus resistant genes provide additional protection.

“It’s a system that will protect the virus resistance genes utility because if there’s less virus getting into a plant, the probability that the virus will have a random mutation that generates a strain that overcomes the resistance also goes down,” Mutschler-Chu said. Similarly, since acylsugars are non-toxic and don’t kill insects, there is less selection pressure for insects themselves to become tolerant, so they adapt more slowly to the repellant.

The new elite lines, soon to be available to seed companies, have had most of the wild genes from S. pennellii that promote agronomically undesirable traits removed from their genomes. Mutschler-Chu retained critical acylsugar genes while removing many other wild genes that caused negative traits such as excess branches, small fruit and an off-flavor. While initial research lines contained about 12% wild S. pennellii DNA, the newest lines are down to approximately 2.5% wild DNA.

In broader terms, the work practically demonstrates a process for incorporating a valuable trait, based on a safe natural compound, controlled by numerous genes, and that is effective against viruses and multiple pests, a strategy that could also benefit other crops, Mutschler-Chu said.

While the elite lines will be released non-exclusively for any seed company to breed traits into their commercial varieties, they will need to apply for a license with Cornell’s Center for Technology Licensing before they can sell seeds.

Provided by
Cornell University

Citation:
New tomato bred to naturally resist pests and curb disease (2023, January 19)
retrieved 19 January 2023
from https://phys.org/news/2023-01-tomato-bred-naturally-resist-pests.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

Licorice leaf extract is a promising plant protectant for conventional and organic agriculture

February 9, 2023
Agriculture

Reducing pesticide pollution and harvesting intensity can increase crop yield and help in climate change mitigation

February 9, 2023
Agriculture

Five cool things you should know about them

February 9, 2023
Agriculture

A bush food with business potential

February 8, 2023
Agriculture

Study sheds light on specificity of root exudate types for soil organic carbon decomposition

February 8, 2023
Agriculture

Adding an alligator gene to reduce infections in farmed catfish

February 8, 2023
Next Post

Live Green Co adds precision fermentation to enhance recommendations

Study explores control options for black swallowwort

Latest News

Sales stay strong, but another quarterly loss for Utz

May 14, 2022

Natfoods invests US$12m in contract farming

January 19, 2023

Strauss feels the impact of Salmonella related to chocolate recall and site shutdown

August 22, 2022

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: