www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

How ‘push-pull’ companion crops help manage the devastating fall armyworm pest

Admin by Admin
April 13, 2022
Reading Time:3min read
0

RELATED POSTS

Citizen science initiatives increase pollinator activity in private gardens and green spaces

Why this promising biofuel crop takes a summer break

Plant protection of the future may come from the plants themselves

Schematic representation of a Push-Pull field and the research hypotheses: (1) Companion plant volatiles [Desmodium spp. intercrop (greenleaf desmodium, D. intortum or silverleaf desmodium, D. uncinatum) and border (Brachiaria Mulato II) plants] influence the behavior of female Spodoptera frugiperda and reduce oviposition on the main maize crop. (2) Companion plant volatiles attract parasitoid wasps to increase parasitism rate of the herbivore. Credit: Frontiers in Ecology and Evolution (2022). DOI: 10.3389/fevo.2022.883020

Adopting a novel planting technique known as “push-pull farming” can help massively reduce crop losses to pests and improve food security in sub-Saharan Africa, new research has found.

The fall armyworm—an invasive pest—has recently invaded and rapidly spread across large areas of Africa, where it has become a major threat to agriculture, sustainable food production, food security and livelihoods, affecting at least 400,000 hectares and causing estimated crop losses worth $3 billion a year. The fall armyworm is particularly attracted to maize, which is the main staple and cash crop for 300 million smallholder farmers in Africa. This means an infestation can not only have a significant impact on food security, but also cause financial harm as well.

Push-pull farming involves planting companion plants around food crops like maize, as a way of protecting them against damaging pests like the fall armyworm. Crop losses are ten times lower when push-pull is used.

This research, published in Frontiers in Ecology and Evolution, has shown that push-pull farming can help protect these crops by not only repelling pests in the first place (push) but also by attracting other insects like parasitic wasps that control the armyworm pest (pull) as a natural defense mechanism. The study identifies the bioactive compounds that cause these effects.

The researchers, including co-lead author Professor Toby Bruce from Keele University, tested the potential use of push-pull farming in a variety of settings including field conditions and in the laboratory.

Their results showed that the chemical scent compounds given off by the plants, known as “volatiles,” had a repellent effect on moths whose eggs hatch into fall armyworm caterpillars. Electrical recordings from insect antennae revealed which chemicals insects were sensitive to, and behavioral responses to the identified chemicals were characterized in insect behavior tests.

Buy JNews
ADVERTISEMENT

As well as the smell of the companion plants being less attractive to the herbivorous moths compared to the maize on its own, the companion plant smells were also attractive to parasitoid wasps, which are natural enemies of the armyworm.

This means the companion plants not only repelled most of the pests, but also called natural defenders to deal with the ones that did attack the maize plants, with the findings highlighting the positive impact of adopting this farming technique.

Professor Bruce said: “Our study shows the mechanisms by which ‘push-pull’ companion cropping can effectively control fall armyworm. We have identified and characterized scent chemicals from the companion crops that repel and reduce egg laying by fall armyworm moths while also attracting beneficial natural enemy insects that attack the pest.”

Dr. Amanuel Tamiru, from the International Center of Insect Physiology and Ecology, said: “This is the first comprehensive study involving both laboratory and field investigation aimed at elucidating the underpinning chemical ecology mechanisms which enabled ‘Push-Pull’ agroecological farming system to fight the devastating fall armyworm pest.

“The fall armyworm moths employ olfactory cues to locate their preferred host to lay eggs, subsequently enabling its larvae to easily find food source upon hatching. This process is disrupted when the moths detect non preferred odor cues around their host plant leading to deterrence of the egg laying pest. Intriguingly, the same odor cues are attractive to the parasitic wasps, the pest’s natural enemies, making it difficult for any feeding pest to survive.”

The researchers have also developed a mobile app which gives farmers practical information about how they can start using push-pull farming.


Opportunities for natural enemy to fight devastating fall armyworm


More information:
Islam S. Sobhy et al, Bioactive Volatiles From Push-Pull Companion Crops Repel Fall Armyworm and Attract Its Parasitoids, Frontiers in Ecology and Evolution (2022). DOI: 10.3389/fevo.2022.883020

Provided by
Keele University

Citation:
How ‘push-pull’ companion crops help manage the devastating fall armyworm pest (2022, April 12)
retrieved 12 April 2022
from https://phys.org/news/2022-04-push-pull-companion-crops-devastating-fall.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

Citizen science initiatives increase pollinator activity in private gardens and green spaces

January 27, 2023
Agriculture

Why this promising biofuel crop takes a summer break

January 27, 2023
Agriculture

Plant protection of the future may come from the plants themselves

January 26, 2023
Agriculture

Study analyzes gender differences in uptake of biological control agent to tackle tomato pest in Pakistan

January 26, 2023
Agriculture

Proper management of nitrogen and irrigation shown to increase yields and reduce leaching

January 26, 2023
Agriculture

Can we increase the carbon content of agricultural soils?

January 26, 2023
Next Post

Community Agriculture Alliance: Collaborating for agriculture and water

M&M Partners with CSC Grameen eStores for its Small Commercial Vehicle (SCV) Range

Latest News

Loaded lineup for Farm Futures Summit

December 9, 2022

Invest In High Yielding New Build Homes In Dunedin

December 15, 2022
Why Seed Banks Alone Can’t Protect The Food of The Future

Why Seed Banks Alone Can’t Protect The Food of The Future

February 24, 2022

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: