www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

Global cropland could be almost halved by increasing agricultural productivity

Admin by Admin
February 24, 2022
Reading Time:6min read
0
Global cropland could be almost halved by increasing agricultural productivity

RELATED POSTS

Citizen science initiatives increase pollinator activity in private gardens and green spaces

Why this promising biofuel crop takes a summer break

Plant protection of the future may come from the plants themselves

Fig 1. Schematic overview of the three different land saving strategies biophysical land saving (BLS), uniform land saving (ULS) and socio-economic land saving (SLS). The strategies differ in their assumptions on maintaining current cropping patterns (BLS, ULS) versus their change towards profit-optimized cropping patterns (SLS), and the spatial implementation of land saving at locations with the lowest yields (BLS), uniformly across the region at high- and low-yielding locations (ULS), or the least profitable locations (SLS). Credit: DOI: 10.1371/journal.pone.0263063

With rising global demand for agricultural commodities for use as food, feed, and bioenergy, pressure on land is increasing. At the same time, land is an important resource for tackling the principal challenges of the 21st century—the loss of biodiversity and global climate change. One solution to this conflict could be to increase agricultural productivity and thus reduce the required cropland. In an interdisciplinary model-based study, LMU geographers Julia Schneider and Dr. Florian Zabel, together with researchers from the Universities of Basel and Hohenheim, have analyzed how much land area could be saved globally through more efficient production methods and what economic effects—for example, on prices and trade—this would have. As the authors reported in the journal PLOS ONE, their modeling showed that under optimized conditions up to almost half of current cropland could be saved. As a result of increased efficiency, the prices for agricultural products would fall in all regions and global agricultural production would increase by 2.8%.

“The starting point for our work was a current scientific debate as to whether it is better for protecting biodiversity to cultivate more extensively on more land or more intensively on less land, with all the respective pros and cons,” says Schneider. “In this context, we were interested in the actual potential to take land out of agricultural production and what economic effects the implementation of such land saving would have.” To answer this question, the scientists used a process-based biophysical crop model for 15 globally important food and energy crops to analyzed what land saving potential could be obtained by agricultural intensification. For their analysis, they assumed that the yield gap between current and potentially obtainable yields can be closed by 80 percent through more efficient farming methods—such as the efficient use of fertilizers and the optimization of sowing dates or pest and disease control—and that the overall volumes of agricultural products should correspond to today’s output.

Almost half the cropland would be sufficient

The authors come to the overall conclusion that under these conditions the current global cropland requirements could be reduced by between 37 and 48 percent. Regionally, the land saving potential varies: In Europe and North America, for example, there is little land saving potential, as farming is already heavily industrialized and the degree of intensification is very high. “Depending on the established farming system, the maximum possible yields are almost reached in some cases,” says co-author Zabel. “In regions such as Sub-Saharan Africa by contrast, current yields are mostly well below what would be possible based on the local environmental conditions and with optimized farming methods.” According to the model simulations, this is also the case in India and parts of Latin America, albeit to a somewhat lesser extent there than in Sub-Saharan Africa. More efficient production could therefore lead to large land saving potentials in these regions. Regarding individual crops, the researchers identified particularly large land saving potentials above all for grains such as sorghum and millet, which are currently mainly cultivated by smallholder farmers in regions with large yield gaps. However, for cash crops such as oil palm or sugar cane, which are already cultivated very intensively, the model showed little land saving potential.

As their next step, the scientists integrated the regional land saving potentials into an economic model developed by the Universities of Basel and Hohenheim, in order to investigate the economic effects of the cropland reduction. “This revealed that the more efficient use of land would lead to a fall in prices in all regions and for all crops,” says Schneider. In some regions, this could have a positive effect on food security. Yet, the simulations showed that the increased efficiency would in turn motivate the farmers in some regions to increase their production, causing the global production of agricultural goods to rise by 2.8 percent.

Strongest economic effects in regions with high pressure on land

Buy JNews
ADVERTISEMENT

There were big variations in the economic effects of land saving between the investigated regions. “Surprisingly, we discovered that the strongest economic effects—that is, the largest changes in prices, production, and trade flows—did not occur in the regions with the largest land saving potential, but in densely populated regions with high pressure on land, such as in Malaysia and Indonesia and parts of South America. In these countries, land is a particularly scarce and therefore an expensive resource and thus makes up a big part of the total production costs,” says Schneider. Through globalized agricultural markets and international trade, the effects of land saving could be experienced in spatially distant regions. Globally falling prices, for example, could lead to an increase in imports of around 30 percent in the Middle East and parts of North Africa, as they become cheaper than domestic production.

The calculated potentials for land saving could serve as a starting point to assess the potential for alternative usages of freed-up land, such as carbon sequestration through afforestation and reforestation to mitigate climate change. By quantifying the carbon sequestration potential on saved land through the recovery of natural vegetation, the researchers found that additionally between 114 Gt and 151 Gt CO2 could potentially be sequestered on the saved land. For comparison, annual global emissions are currently around 42 Gt CO2. Other options for alternative usages of the saved land could be the cultivation of bioenergy crops or the protection of biodiversity, e.g. by setting up nature reserves and similar measures. “Against the background of a growing global population and changing consumption and dietary patterns, the expansion of current cropland is still discussed as one strategy to increase agricultural production,” says Schneider. “Our study has shown that this needs to be discussed critically, as a more efficient usage of current cropland could help to reduce the pressure on land resources. Moreover, we see the importance of integrative and global research approaches, which enable to identify potential trade-offs and co-benefits between food security, climate change mitigation and the protection of biodiversity. They thus play a major role in reconciling important goals of the 21st century for a sustainable development.”


Exploring how genetic engineering can have a positive effect on the climate


More information:
Julia M. Schneider et al, Global cropland could be almost halved: Assessment of land saving potentials under different strategies and implications for agricultural markets, PLOS ONE (2022). DOI: 10.1371/journal.pone.0263063. journals.plos.org/plosone/arti … journal.pone.0263063

Provided by
Ludwig Maximilian University of Munich


Citation:
Global cropland could be almost halved by increasing agricultural productivity (2022, February 24)
retrieved 24 February 2022
from https://phys.org/news/2022-02-global-cropland-halved-agricultural-productivity.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

Citizen science initiatives increase pollinator activity in private gardens and green spaces

January 27, 2023
Agriculture

Why this promising biofuel crop takes a summer break

January 27, 2023
Agriculture

Plant protection of the future may come from the plants themselves

January 26, 2023
Agriculture

Study analyzes gender differences in uptake of biological control agent to tackle tomato pest in Pakistan

January 26, 2023
Agriculture

Proper management of nitrogen and irrigation shown to increase yields and reduce leaching

January 26, 2023
Agriculture

Can we increase the carbon content of agricultural soils?

January 26, 2023
Next Post
Farmbot launches next generation satellite monitor

Strategic partnership announced between Proagrica and Dacom Farm Intelligence

Farmbot launches next generation satellite monitor

F4F recognised as a Category Finalist at Kaap Agri Supplier of the Year 2016 Awards

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest News

Halala! Agri matrics shine despite tough year

January 21, 2023

White Biotechnology Market Report 2021-26: Share, Scope, Demand, Growth And Forecast – Agriculture Industry Today

April 11, 2022

Scientists blame listeria’s low priority for regulatory support as the likely true cause for a low-burn listeria outbreak

August 31, 2022

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: