www.agtechdaily.com
No Result
View All Result
  • Login
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
Contact
ABOUT US
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability
No Result
View All Result
www.agtechdaily.com
No Result
View All Result
Home Agriculture

Antibiotic used on food crops affects bumblebee behavior, lab study finds

Admin by Admin
February 25, 2022
Reading Time:6min read
0
Antibiotic used on food crops affects bumblebee behavior, lab study finds

RELATED POSTS

Impact of bulk density and content of rock fragments

Almost all of Africa’s maize crop is at risk from devastating fall armyworm pest, study reveals

Copying nature to help plants resist viruses

“I decided to become a bee biologist because I wanted to understand how the natural environment can influence agriculture and vice versa,” says Laura Avila, above. Her work spans experiments in both the lab and field. Credit: Emory University

An antibiotic sprayed on orchard crops to combat bacterial diseases slows the cognition of bumblebees and reduces their foraging efficiency, a laboratory study finds. Proceedings of the Royal Society B published the findings by scientists at Emory University and the University of Washington.

The research focused on streptomycin, an antibiotic used increasingly in U.S. agriculture during the past decade.

“No one has examined the potential impacts on pollinators of broadcast spraying of antibiotics in agriculture, despite their widespread use,” says Laura Avila, co-lead author of the paper and a post-doctoral fellow in Emory’s Department of Biology.

The current study was based on laboratory experiments using an upper-limit dietary exposure of streptomycin to bumblebees. It is not known whether wild bumblebees are affected by agricultural spraying of streptomycin, or whether they are exposed to the tested concentration in the field.

“This paper is a first step towards understanding whether the use of streptomycin on food crops may be taking a toll on pollinators that benefit agriculture,” says Berry Brosi, senior author of the paper. Brosi began the work as a faculty member in Emory’s Department of Environmental Sciences and is currently with the University of Washington.

Funded by a U.S. Department of Agricultural grant, the researchers will now conduct field studies where streptomycin is sprayed on fruit orchards. If a detrimental impact is found on bumblebees, the researchers hope to provide evidence to support recommendations for methods and policies that may better serve farmers.

Buy JNews
ADVERTISEMENT

“Production of our food, farmer livelihoods and the health of pollinators are all tied together,” Brosi says. “It’s critically important to find ways to maintain agricultural production while also conserving the ecosystem services—including pollination—that a biodiverse ecosystem provides.”

Based on established evidence, the researchers hypothesize that the negative impact of streptomycin on bumblebees seen in the lab experiments may be due to the disruption of the insects’ microbiome.

“We know that antibiotics can deplete beneficial microbes, along with pathogens,” Avila says. “That’s true whether the consumers of the antibiotics are people, other animals or insects.”

Avila is a member of the lab of Nicole Gerardo, Emory professor of biology and an entomologist who studies the co-evolution of insect-microbe systems.

During the past decade, the spraying of antibiotics on U.S. crops has increased exponentially as farmers battle a rise in plant bacterial infections. “Fire blight” can turn the blossoms and shoots of apple and pear trees black, making them appear scorched by fire, and can also kill entire trees. “Citrus greening,” also known as “yellow dragon disease,” turns citrus fruits green, bitter and unusable and has devasted millions of acres of crops throughout the United States and abroad.

“I’ve seen the struggle of making a living by producing crops, how expensive and difficult it can be to control diseases and pests,” says Avila, who grew up in a coffee-producing region of Costa Rica.

Largely untouched forests bordered her family farm. “The diversity all around us fascinated me,” Avila says. “I decided to become a bee biologist because I wanted to understand how the natural environment can influence agricultural production and vice versa.”

Seventy-five percent of the world’s food crops depend on pollination by at least one of more than 100,000 species of pollinators, including 20,000 species of bees, as well as other insects and vertebrates like birds and bats. And yet, many of the insect pollinator species, particularly bees, face risks of extinction.

Previous studies have shown that the antibiotic tetracycline, used to treat pathogens in managed honeybee hives, can alter the gut microbiome of the insects and indirectly increase susceptibility to pathogens and mortality. Exposure to high oxytetracycline concentrations has also been found to have a similar effect on the bumblebee gut microbiome, decreasing their immunity to pathogens. And exposure to high doses of tetracycline have been found to affect honeybee learning, while oxytetracycline slows the onset of foraging in managed colonies.

For the current paper, the researchers conducted lab experiments with managed bumblebees, Bombus impatiens, to test the effects of an upper-limit dietary exposure to streptomycin. Half of the bees were fed on plain sucrose, or sugar water, to simulate nectar. The remaining bees were fed on sucrose dosed with streptomycin.

After two days on this diet, the bees were presented different-colored cardboard strips—one yellow and the other blue. One color was saturated with plain water and the other was saturated with sucrose. In a series of training trials, each bee was presented a single, colored strip until it touched it with its antennae or proboscis.

The researchers measured the number of trials it took for a bee to show a preference for the color strips saturated with sucrose. The bees fed streptomycin often required roughly three times as many trials to make the association, relative to the other bees. The antibiotic-treated bees were also more likely to display avoidance behavior towards either of the stimuli.

Those bees that passed a training threshold were given a short-term memory test five minutes later. Each bee was presented with both of cardboard strips simultaneously and allowed to select one. The rate at which the bees dosed with streptomycin selected the sucrose reward was around 55 percent, while the untreated bees selected the sucrose at a rate of nearly 87 percent.

To assess foraging ability, trials were conducted in a foraging chamber containing an experimental array of artificial flowers that dispensed sucrose or plain water. The flowers were either blue or yellow but were identical in size and shape. Each bee was outfitted with a tiny, ultra-lightweight radio frequency identifier “backpack” to monitor its movements among the artificial flowers, which were each equipped with a short-range antenna and tracking system.

The computer-analyzed results showed that the antibiotic-exposed bees visited far fewer sucrose-rewarding flowers relative to the control bees.

In the spring, Avila and Brosi will launch field studies to determine if broadcast spraying of streptomycin affects bumblebees in pear orchards.

“I was surprised at how strong an effect we found of streptomycin on bumblebees in the laboratory experiments,” Brosi says. “That makes it imperative to learn if we see similar effects in an agricultural setting.”

The timing of antibiotic application, the amount applied and possible alternatives to the use of an antibiotic may be potential mitigation methods should the field research identify harmful impacts on bumblebees of agricultural spraying of streptomycin, the researchers note.


Pollen patties may save bees poisoned by pesticides


More information:
Laura Avila et al, Upper-limit agricultural dietary exposure to streptomycin in the laboratory reduces learning and foraging in bumblebees, Proceedings of the Royal Society B: Biological Sciences (2022). DOI: 10.1098/rspb.2021.2514

Provided by
Emory University


Citation:
Antibiotic used on food crops affects bumblebee behavior, lab study finds (2022, February 17)
retrieved 25 February 2022
from https://phys.org/news/2022-02-antibiotic-food-crops-affects-bumblebee.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Source link

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • More
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Skype (Opens in new window)

Like this:

Like Loading...
Admin

Admin

Related Posts

Agriculture

Impact of bulk density and content of rock fragments

February 1, 2023
Agriculture

Almost all of Africa’s maize crop is at risk from devastating fall armyworm pest, study reveals

February 1, 2023
Agriculture

Copying nature to help plants resist viruses

February 1, 2023
Agriculture

The unlikely food source for pollinators

February 1, 2023
Agriculture

European farms mix things up to guard against food-supply shocks

January 28, 2023
Agriculture

Development of machine vision system capable of locating king flowers on apple trees

January 28, 2023
Next Post
DA lures investors to venture into fish aquaculture

DA lures investors to venture into fish aquaculture

Center Providing Plant Management Solutions for the Southeast Region –

Center Providing Plant Management Solutions for the Southeast Region -

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest News

Second workshop for agri entrepreneurs on protected agriculture in hill country

January 25, 2023

Consumers warned to avoid titanium dioxide

December 7, 2022

NCBA Disappointed in House Passage of Special Investigator Bill

June 17, 2022

Most Popular

  • Agricultural E-Commerce Boosts Incomes For Cherry farmers in Shandong

    0 shares
    Share 0 Tweet 0
  • Seeds of Discord: Farmers Accused of Fraud in Dicamba Dispute | Arkansas Business News

    0 shares
    Share 0 Tweet 0
  • Farm Credit Administration tours the Midwest – Agweek

    0 shares
    Share 0 Tweet 0
  • 12 Biggest Agriculture Companies in the World

    0 shares
    Share 0 Tweet 0
  • How Technology Is Changing Agriculture

    0 shares
    Share 0 Tweet 0
Facebook Twitter Pinterest LinkedIn
www.agtechdaily.com

AgTech Daily provides in-depth journalism and insight into the most impactful news and trends shaping the agricultural and food technology industry

Categories

  • Agriculture
  • Announcements
  • Food
  • Others
  • Sustainability
  • Technology

Quick Links

  • Home
  • About us

© 2022 - All Right Reserved. www.agtechdaily.com.

No Result
View All Result
  • Home
  • Agriculture
  • Food
  • Technology
  • Sustainability

© 2022 - All Right Reserved. www.agtechdaily.com.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
%d bloggers like this: